
Key Stage 2
A guide to The Computing Curriculum

Teacher
Guide

Key Stage 2 Teacher Guide

1	 Introduction

2	 Curriculum design
2	 The approach

2	 Coherence and flexibility

2	 Knowledge organisation

3	 Spiral curriculum

3	 Physical computing

3	 Online safety

4	 Core principles

4	 Inclusive and ambitious

4	 Research-informed

4	 Time-saving for teachers

5	 Structure of the units of work
5	 The Computing Curriculum overview

5	 Brief overview

6	 Unit summaries

8	 National curriculum coverage — lower key stage 2

9		 Upper key stage 2

10	 Teaching order

10	 	 Mixed year groups

11	 Progression
11	 Progression across year groups

12	 Progression within a unit — learning graphs

14	 Pedagogy
14	 Lead with concepts

14	 Work together

14	 Get hands-on

14	 Unplug, unpack, repack

14	 Model everything

15	 Foster program comprehension

15	 Create projects

15	 Add variety

15	 Challenge misconceptions
15	 Make concrete

15	 Structure lessons

15	 Read and explore code first

16	 Assessment
16	 Formative assessment

16	 Summative assessment

16		 Multiple choice quiz (MCQ)

16	 	 Rubric

17	 Adapting for your setting

18	 Resources
18	 Software and hardware

18		 Hardware

18		 Software

19		 Software and hardware overview

21	 Raspberry Pi Foundation

Contents

The Computing Curriculum is our complete bank of free
lesson plans and other resources that offer you everything
you need to teach computing lessons to all school-aged
learners. It helps you cover the full breadth of computing,
including computing systems, programming, creating
media, data and information, and societal impacts of
digital technology.

The 500 hours of free, downloadable resources within
The Computing Curriculum include all the materials you
need in your classroom: from lesson plans and slide decks
to activity sheets, homework, and assessments. To our
knowledge, this is the most comprehensive set of free
teaching and learning materials for computing and digital
skills in the world.

The aims of The Computing Curriculum are as follows:

•• 	Reduce teacher workload
•• 	Show the breadth and depth of computing, particularly 	
	 beyond programming
•• 	Demonstrate how computing can be taught well, based
	 on research
•• 	Highlight areas for subject knowledge and pedagogy
	 enhancement through training

The Computing Curriculum resources are regularly
updated in response to teachers’ feedback. You can share
your feedback at http://the-cc.io/feedback or by email to
resourcesfeedback@raspberrypi.org.

Key Stage 2 Teacher Guide | 1

Introduction

http://the-cc.io/feedback
mailto:resourcesfeedback%40raspberrypi.org?subject=

The approach

Coherence and flexibility
The Computing Curriculum is structured in units. For
these units to be coherent, the lessons within a unit
must be taught in order. However, across a year group,
the units themselves do not need to be taught in a
particular order, with the exception of units on
programming, where concepts and skills rely on
students’ prior learning and experiences.

Knowledge organisation
The Computing Curriculum uses our taxonomy of
computing content to ensure comprehensive coverage of
the subject. The taxonomy provides a way to look at and
describe the subject of computing as a set of
interconnected topics; it doesn’t define standards or
curricula. There are, of course, many ways of organising
the subject matter, implemented through exam
specifications, textbooks, schemes of learning, and various
progression guides. For our computing taxonomy, we

Curriculum design

reviewed examples of each of these from England and
beyond. All learning outcomes can be described through
our computing taxonomy of eleven strands, ordered
alphabetically as follows:

•• 	Algorithms — Be able to comprehend, design, create,
	 and evaluate algorithms
•• 	Artificial intelligence — Developing computer systems 	
	 that determine the relationships between inputs and 	
	 output in order to make predictions rather than 		
	 following programmed instructions
•• 	Computer networks — Understand how networks can
	 be used to retrieve and share information, and how
	 they come with associated risks
•• 	Computer systems — Understand what a computer is, and
	 how its constituent parts function together as a whole
•• 	Creating media — Select and create a range of media
	 including text, images, sounds, and video
•• 	Data and information — Understand how data is 		
	 stored, organised, and used to represent real-world 		
	 artefacts and scenarios

•• 	Design and development — Understand the activities
	 involved in planning, creating, and evaluating
	 computing artefacts
•• 	Effective use of tools — Use software tools to support
	 computing work
•• 	Impact of technology — Understand how individuals,
	 systems, and society as a whole interact with
	 computer systems
•• 	Programming — Create software to allow computers
	 to solve problems
•• 	Safety and security — Understand risks when using
	 technology, and how to protect individuals and
	 systems

Our taxonomy provides categories and an organised view
of content to encapsulate the discipline of computing.
Whilst all strands are present across all year groups in
The Computing Curriculum materials, they are not always
taught explicitly.

Curriculum design | Key Stage 2 Teacher Guide | 2

Spiral curriculum

The units for key stages 1 and 2 are based on a spiral
curriculum. This means that each of the themes is revisited
regularly (at least once in each year group), and learners
revisit each theme through a new unit that consolidates
and builds on prior learning within that theme.

This style of curriculum design reduces the amount of
knowledge lost through forgetting, as topics are revisited
yearly. It also ensures that connections are made even if
different teachers are teaching the units within a theme in
consecutive years.

Curriculum design | Key Stage 2 Teacher Guide | 3

Physical computing

In The Computing Curriculum, we acknowledge that
physical computing plays an important role in modern
pedagogical approaches in computing, both as a tool to
engage learners and as a strategy to develop learners’
understanding in more creative ways. Additionally, physical
computing supports and engages a diverse range of
learners in tangible and challenging tasks.

The physical computing units in The Computing
Curriculum are:

•• Year 5 – Selection in physical computing, which uses
a Crumble controller

•• Year 6 – Sensing movement, which uses a micro:bit

Online safety

For each unit, the unit overview document shows the links
between the content of the lessons and England’s national
curriculum and the Education for a Connected World
framework (the-cc.io/efacw). These references have been
provided to show where aspects relating to online safety,
or digital citizenship, are covered within the The
Computing Curriculum. Not all of the objectives in the
Education for a Connected World framework are covered
in the The Computing Curriculum, as some are better
suited to other subjects in England’s education system.
However, the coverage required for England’s computing
national curriculum is provided.

Schools should decide for themselves how they will ensure
that online safety is being managed effectively in their
setting, as the scope of this is much wider than just
curriculum content.

http://the-cc.io/efacw

Effective
learning

experience Teaching
experience

Curricular

knowledge

Subject
matter
content

Knowledge
of our

learners
Pedagogical
knowledge

Core principles

Inclusive and ambitious
The Computing Curriculum has been written to support all
learners. Each lesson is sequenced so that it builds on the
learning from the previous lesson, and where appropriate,
activities are scaffolded so that all learners can succeed
and thrive. Scaffolded activities provide learners with extra
resources, such as visual prompts, to reach the same
learning goals as the rest of the class. Exploratory tasks
foster a deeper understanding of a concept, encouraging
learners to apply their learning in different contexts and
make connections with other learning experiences.

As well as scaffolded activities, embedded within the
lessons are a range of pedagogical strategies (defined in
the ‘Pedagogy’ section of this document), which support
making computing topics more accessible.

Curriculum design | Key Stage 2 Teacher Guide | 4

Research-informed
The subject of computing is much younger than many
other subjects, and as such, there is still a lot more to learn
about how to teach it effectively. To ensure that teachers
are as prepared as possible, The Computing Curriculum
builds on a set of pedagogical principles (see the
‘Pedagogy’ section of this document), which are
underpinned by the latest computing research, to
demonstrate effective pedagogical strategies throughout.

To remain up-to-date as research continues to develop,
every aspect of The Computing Curriculum is reviewed
each year and changes are made as necessary.

Time-saving for teachers
The Computing Curriculum has been designed to reduce
teacher workload. To ensure this, The Computing
Curriculum includes all the resources a teacher needs,
covering every aspect from planning, to progression
mapping, to supporting materials.

1 Networks are not part of England’s key stage 1 national curriculum for computing, but the title is used as a strand across primary.

*The numbers in the brackets are a ‘quick code’ reference for each unit, e.g. 1.3 refers to the third Year 1 unit in the recommended teaching order.

Structure of the units of work | Key Stage 2 Teacher Guide | 5

Every unit of work in the The Computing Curriculum contains: a unit overview; a learning graph, to show the
progression of skills and concepts in a unit; lesson content — including a detailed lesson plan, slides for
learners, and all the resources you will need; and formative and summative assessment opportunities.

The Computing Curriculum overview

Structure of the units of work

Computing systems
and networks

Connecting computers
(3.1)

The internet

(4.1)

Systems and searching
(5.1)

Communication and
collaboration (6.1)

Creating media

Stop-frame animation
(3.2)

Audio production

(4.2)

Video production
(5.2)

Webpage creation
(6.2)

Programming A

Sequencing sounds
(3.3)

Repetition in shapes

(4.3)

Selection in physical
computing (5.3)

Variables in games

(6.3)

Data and information

Branching databases
(3.4)

Data logging

(4.4)

Flat-file databases
(5.4)

Introduction to

spreadsheets (6.4)

Creating media

Desktop publishing
(3.5)

Photo editing

(4.5)

Introduction to
vector graphics (5.5)

3D modelling
(6.5)

Programming B

Events and actions
in programs (3.6)

Repetition in games
(4.6)

Selection in quizzes
(5.6)

Sensing movement
(6.6)

Year 3

Year 4

Year 5

Year 6

Unit summaries

Computing systems
and networks

Connecting computers
Identifying that digital
devices have inputs,

processes, and outputs,
and how devices can

be connected
to make networks.

The internet
Recognising the internet
as a network of networks
including the WWW, and
why we should evaluate

online content.

Creating media

Stop-frame animation
Capturing and editing
digital still images to
produce a stop-frame

animation that
tells a story.

Audio production
Capturing and editing

audio to produce a
podcast, ensuring that

copyright is
considered.

Programming A

Sequencing sounds
Creating sequences in

a block-based
programming language

to make music.

Repetition in shapes
Using a text-based

programming language
to explore

count-controlled loops
when drawing shapes.

Data and information

Branching databases
Building and

using branching
databases to group

objects using
yes/no questions.

Data logging
Recognising how
and why data is

collected over time,
before using data

loggers to carry out
an investigation.

Creating media

Desktop publishing
Creating documents by
modifying text, images,
and page layouts for a

specified purpose.

Photo editing
Manipulating digital

images, and reflecting
on the impact of

changes and whether
the required purpose is

fulfilled.

Programming B

Events and actions
in programs

Writing algorithms and
programs that use a
range of events to

trigger sequences of
actions.

Repetition in games
Using a block-based

programming
language to explore
count-controlled and
infinite loops when
creating a game.

Year 3

Year 4

Structure of the units of work | Key Stage 2 Teacher Guide | 6

Structure of the units of work | Key Stage 2 Teacher Guide | 7

Unit summaries

Computing systems
and networks

Systems and searching
Recognising IT systems

in the world and how
some can enable

searching on the internet.

Communication
and collaboration

Exploring how data is
transferred by working
collaboratively online.

Creating media

Video production
Planning, capturing,
and editing video to

produce a short film.

Webpage creation
Designing and

creating webpages,
giving consideration

to copyright,
aesthetics, and

navigation.

Programming A

Selection in physical
computing

Exploring conditions
and selection using

a programmable
microcontroller.

Variables in games
Exploring variables

when designing and
coding a game.

Data and information

Flat-file databases
Using a database
to order data and
create charts to

answer questions.

Introduction to
spreadsheets

Answering
questions by using

spreadsheets
to organise and
calculate data.

Creating media

Introduction to vector
graphics

Creating images
in a drawing program

by using layers and
groups of objects.

3D modelling
Planning, developing,

and evaluating 3D
computer models of

physical objects.

Programming B

Selection in quizzes
Exploring selection
in programming to
design and code an

interactive quiz.

Sensing movement
Designing and coding

a project that
captures inputs from

a physical device.

Year 5

Year 6

✓✓✓

✓✓

✓ ✓

✓

✓

✓✓✓✓✓✓✓ ✓ ✓ ✓ ✓ ✓

✓ ✓

✓ ✓

✓

✓

✓ ✓

✓ ✓ ✓

✓

✓✓ ✓

✓

Structure of the units of work | Key Stage 2 Teacher Guide | 8

National curriculum coverage - Years 3 and 4

Design, write, and debug programs that accomplish specific goals, including controlling or
simulating physical systems; solve problems by decomposing them into smaller parts

Use sequence, selection, and repetition in programs;
work with variables and various forms of input and output

Use logical reasoning to explain how some simple algorithms work
and to detect and correct errors in algorithms and programs

Understand computer networks, including the internet; how they can provide multiple services,
such as the World Wide Web; and the opportunities they offer for communication and collaboration

Use search technologies effectively, appreciate how results are selected
and ranked, and be discerning in evaluating digital content

Select, use, and combine a variety of software (including internet services) on a range of digital
devices to design and create a range of programs, systems, and content that accomplish given
goals, including collecting, analysing, evaluating, and presenting data and information

Use technology safely, respectfully, and responsibly; recognise acceptable/unacceptable
behaviour; identify a range of ways to report concerns about content and contact

3.
1

	C
on

ne
ct

in
g

	

co
m

pu
te

rs

 3.
2

	S
to

p-
fra

m
e

	

an
im

at
io

n
	 3.

3
	S

eq
ue

nc
in

g
so

un
ds

	 3.

4
	B

ra
nc

hi
ng

	

da
ta

ba
se

s
	 3.

5
	D

es
kt

op
 p

ub
lis

hi
ng

	 3.

6
	E

ve
nt

s
an

d
ac

tio
ns

	

in
 p

ro
gr

am
s

4.
1

	T
he

 in
te

rn
et

4.
2

	A
ud

io
 p

ro
du

ct
io

n

	 4.
3

	R
ep

et
iti

on
 in

 s
ha

pe
s

	 4.
4

	D
at

a
lo

gg
in

g

4.
5

	P
ho

to
 e

di
tin

g

	 4.
6

	R
ep

et
iti

on
 in

 g
am

es

✓✓

✓

✓

✓

✓

✓ ✓ ✓

✓

✓

✓

✓

✓

✓

✓

✓

✓✓ ✓

✓

✓

✓

✓

✓

✓✓

✓

✓ ✓

✓

✓ ✓

✓

✓

National curriculum coverage - Years 5 and 6

Design, write, and debug programs that accomplish specific goals, including controlling or
simulating physical systems; solve problems by decomposing them into smaller parts

Use sequence, selection, and repetition in programs;
work with variables and various forms of input and output

Use logical reasoning to explain how some simple algorithms work
and to detect and correct errors in algorithms and programs

Understand computer networks, including the internet; how they can provide multiple services,
such as the World Wide Web; and the opportunities they offer for communication and collaboration

Use search technologies effectively, appreciate how results are selected
and ranked, and be discerning in evaluating digital content

Select, use, and combine a variety of software (including internet services) on a range of digital
devices to design and create a range of programs, systems, and content that accomplish given
goals, including collecting, analysing, evaluating, and presenting data and information

Use technology safely, respectfully, and responsibly; recognise acceptable/unacceptable
behaviour; identify a range of ways to report concerns about content and contact

5.
1

	S
ys

te
m

s
an

d
	

se
ar

ch
in

g
 5.

2
	V

id
eo

 p
ro

du
ct

io
n

	 5.
3

	S
el

ec
tio

n
in

 p
hy

si
ca

l
	

co
m

pu
tin

g
	 5.

4
	F

la
t-fi

le
 d

at
ab

as
es

	 5.

5
	In

tro
du

ct
io

n
to

	

ve
ct

or
 g

ra
ph

ic
s

	 5.
6

	S
el

ec
tio

n
in

 q
ui

zz
es

6.
1

	C
om

m
un

ic
at

io
n

an
d

	
co

lla
bo

ra
tio

n

6.
2

	W
eb

pa
ge

 c
re

at
io

n

	 6.
3

	V
ar

ia
bl

es
 in

 g
am

es

	 6.
4

	In
tro

du
ct

io
n

to

	
sp

re
ad

sh
ee

ts

6.
5

	3
D

m
od

el
lin

g

	 6.
6

	S
en

si
ng

 m
ov

em
en

t

Structure of the units of work | Key Stage 2 Teacher Guide | 9

What Why

Teaching order

The order in which to teach units within a school year is not
prescribed, other than for the two ‘Programming’ units for
each year group, which build on each other. It is
recommended that the ‘Programming’ and ‘Creating media’
units be revisited in two different terms within the school
year, so that the concepts and skills can be revisited and
consolidated. Otherwise, schools can choose the order in
which they teach the units, based on the needs of their
learners and other topics or events that are happening
throughout the school year, to make use of cross-curricular
links wherever possible.

Mixed year groups
There are many different approaches to organising learners
in school – one of which is mixed year group classes. The
content throughout The Computing Curriculum is based on
a learning progression from Year 1 through to Year 11 (ages
5–16). In order to use this progression with mixed year
groups, , or any other school organisation system, we advise
teachers to use the learning graphs for the age group which
they are teaching to break up the content as they see fit.

Structure of the units of work | Key Stage 2 Teacher Guide | 10

Computing systems
and networks

Computer
systems

Computer
networks

Programming

Programming

Algorithms

Design and
development

Data and information

Data and information

Creating media

Creating
media

Design and
development

Primary
themes

Taxonomy
strands

Effective use of tools

Impact of technology

Safety and security

Progression | Key Stage 2 Teacher Guide | 11

Progression across year groups

All learning objectives have been mapped to our computing
taxonomy of eleven strands, which ensures that units build
on each other across all year groups.

Within The Computing Curriculum materials for primary
schools, every year group learns through units within the
same four themes, which combine ten strands of the
taxonomy (see table, right).

This approach allows us to use the spiral curriculum
approach (see the ‘Spiral curriculum’ section for more
information) to progress skills and concepts from one
year group to the next.

Progression

Progression | Key Stage 2 Teacher Guide | 12

Progression within a unit —
learning graphs
Learning graphs are provided as part of each unit and
demonstrate progression through concepts and skills.
In order to learn some of those concepts and skills,
learners need prior knowledge of others, so the
learning graphs show which concepts and skills need
to be taught first and which could be taught at a
different time.

The learning graphs often show more statements
than there are learning objectives. All of the skills and
concepts learnt are included in the learning graphs.
Some of these skills and concepts are milestones,
which form learning objectives, while others are
smaller steps towards these milestones, which form
success criteria. Please note that the wording of
the statements may be different in the learning
graphs than in the lessons, as the learning graphs
are designed for teachers, whereas the learning
objectives and success criteria are age-appropriate
so that they can be understood by learners. In each

year group, there are two ‘Programming’ units of
work, but only one ‘Programming’ learning graph.
The second ‘Programming’ unit builds on the content

in the first ‘Programming’ unit so closely that
there is no specific divide where one ends and the
other begins.

To suggest questions that can
be answered using a table of
data

To identify data that can be
logged over time

To use a digital device to
collect data automatically

To recognise that a sensor can
be used as an input device for
data collection

To use a set of logged data to
find information

To export information in
different formats

To explain that a data logger
captures ‘data points’ from
sensors over time

To identify that sensors are
input devices

To choose how often to
automatically collect data
samples

To use a computer program to
sort data by one attribute

Resources are updated regularly - the latest version is available at: the-cc.io/curriculum.
This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a
copy of this license, visit, see creativecommons.org/licenses/by-nc-sa/4.0/

Concept

Skill

Key:

Links:

Direct prerequisite

Scaffolding not
direct prerequisite

Learning graph
Year 4 – Data and information – Data logging

To suggest questions that can
be answered using a table of
data

To identify data that can be
logged over time

To use a digital device to
collect data automatically

To recognise that a sensor can
be used as an input device for
data collection

To use a set of logged data to
find information

To export information in
different formats

To explain that a data logger
captures ‘data points’ from
sensors over time

To identify that sensors are
input devices

To choose how often to
automatically collect data
samples

To use a computer program to
sort data by one attribute

Resources are updated regularly - the latest version is available at: the-cc.io/curriculum.
This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a
copy of this license, visit, see creativecommons.org/licenses/by-nc-sa/4.0/

Concept

Skill

Key:

Links:

Direct prerequisite

Scaffolding not
direct prerequisite

Learning graph
Year 4 – Data and information – Data logging

KS2 Example learning graph
Year 4 - Data and information - Data logging

Progression | Key Stage 2 Teacher Guide | 13

Computing is a broad discipline, and computing teachers
require a range of strategies to deliver effective lessons to
their learners. Our pedagogical approach consists of 12
key principles underpinned by research: each principle has
been shown to contribute to effective teaching and
learning in computing.

It is recommended that computing teachers use their
professional judgement to review, select, and apply
relevant strategies for their learners.

These 12 principles are embodied by The Computing
Curriculum, and you can find examples of their
application throughout the units of work at every key
stage. Beyond delivering these units, you can learn
more about these principles and related strategies in
The Big Book of Computing Pedagogy we have collated
(the-cc.io/pedagogy).

Pedagogy | Key Stage 2 Teacher Guide | 14

Lead with concepts
Support learners in the acquisition of knowledge, through
the use of key concepts, terms, and vocabulary, providing
opportunities to build a shared and consistent
understanding. Glossaries, ​concept maps (the-cc.io/qr07)​,
and displays, along with regular recall and revision, can
support this approach.

Work together
Encourage collaboration, specifically using pair
programming (the-cc.io/qr03) and peer instruction
(the-cc.io/qr04), and also structured group tasks. Working
together stimulates classroom dialogue, articulation of
concepts, and development of shared understanding.

Get hands-on
Use physical computing and making activities that offer
tactile and sensory​ experiences to enhance learning.
Combining electronics and programming with arts and
crafts (especially through exploratory projects) provides
learners with a creative, engaging context to explore and
apply computing concepts.

Unplug, unpack, repack
Teach new concepts by first unpacking complex terms
and ideas, exploring these ideas in unplugged and
familiar contexts, then repacking this new understanding
into the original concept. This approach, called ‘semantic
waves’ (the-cc.io/qr06), can help learners develop a
secure understanding of complex concepts.

Pedagogy

http://the-cc.io/pedagogy
http://the-cc.io/qr07
http://the-cc.io/qr03
http://the-cc.io/qr04
http://the-cc.io/qr06

Model everything
Model processes or practices — everything from
debugging code to binary number conversions — using
techniques such as worked examples (the-cc.io/qr02) and
live coding (the-cc.io/qr05). Modelling is particularly
beneficial to novices, providing scaffolding that can be
gradually taken away.

Foster program comprehension
Use a variety of activities to consolidate knowledge and
understanding​ of the function and structure of program​s
(the-cc.io/qr12),​ including debugging, tracing, and Parson’s
Problems. Regular comprehension activities will help secure
understanding and build connections with new knowledge.

Create projects
Use project-based learning activities to provide learners
with the opportunity to apply and consolidate their
knowledge and understanding. Design is an important,
often overlooked aspect of computing. Learners can
consider how to develop an artefact for a particular user or
function, and evaluate it against a set of criteria.

Pedagogy | Key Stage 2 Teacher Guide | 15

Add variety
Provide activities with different levels of direction,
scaffolding, and support that promote learning, ranging
from highly structured to more exploratory tasks. Adapting
your instruction to suit different objectives will help keep
all learners engaged and encourage greater independence.

Challenge misconceptions
Use formative questioning to uncover misconceptions
and​ adapt teaching to address them as they occur.
Awareness of common misconceptions alongside
discussion, concept mapping, peer instruction,
or simple quizzes can help identify areas of confusion.

Make concrete
Bring abstract concepts to life with real-world, contextual
examples, and a focus on interdependencies with other
curriculum subjects. This can be achieved through the
use of unplugged activities, proposing analogies,
storytelling around concepts, and finding examples of
the concepts in pupils’ lives.

Structure lessons
Use supportive frameworks when planning lessons,
such as ​PRIMM (Predict, Run, Investigate, Modify, Make
— the-cc.io/qr11) and UMC (Use-Modify-Create). These
frameworks are based on research and ensure that
differentiation can be built in at various stages of
the lesson.

Read and explore code first
When teaching programming, focus first on code ‘reading’
activities, before code writing. With both block-based and
text-based programming, encourage pupils to review and
interpret blocks of code. Research has shown that being
able to read, trace, and explain code augments pupils’
ability to write code.

http://the-cc.io/qr02
http://the-cc.io/qr05
http://the-cc.io/qr12
http://the-cc.io/qr11

Formative assessment

Every lesson includes formative assessment opportunities
for you to use, and they are listed in the lesson plan. The
formative assessments may be, for example, observations,
questioning, or marked activities. We include these in
every lesson to ensure that you can recognise and
address learners’ alternate conceptions if they occur.You
can use the assessments to decide whether and how to
adapt your teaching to suit the needs of the learners you
are working with.

At the beginning of every lesson, the learning objective and
success criteria are introduced in the slides. At the end of
every lesson, learners are invited to assess how well they
feel they have met the learning objective using thumbs up,
thumbs sideways, or thumbs down. This gives learners a
reminder of the content that they have covered, as well as
a chance to reflect. It is also a chance for you to see how
confident your class is feeling so that you can make
changes to subsequent lessons accordingly.

Assessment | Key Stage 2 Teacher Guide | 14

Summative assessment

Every unit includes an optional summative assessment
framework in the form of either a multiple choice quiz
(MCQ) or a rubric. The summative assessment materials
can inform your judgement around what a learner has
understood in each computing unit, and could feed into
your school’s assessment process, to align with its
approach to assessment in other foundation subjects.

All units in The Computing Curriculum are designed to cover
both skills and concepts from across England’s computing
national curriculum. Units that focus more on conceptual
development include MCQs as the optional summative
assessment framework. Units that focus more on skills
development end with a project and include a rubric. Within
the ‘Programming’ units, we have selected the assessment
framework (MCQs or rubric) on a best-fit basis.

The summative assessments are meant to give you
insight into your learners’ understanding of computing
concepts and skills, as opposed to their reading and

writing skills. To this end, we have created the MCQs and
rubrics with great care. For the MCQs this involved, for
example, carefully choosing the wording and cultural
references. For the rubrics it involved making them
focused on the purpose of application instead of the
specific lesson context.

Multiple choice quiz (MCQ)

Each question in the MCQ has been designed to
represent learning that learners are meant to achieve
within the unit. In writing the MCQs, we have followed the
diagnostic assessment approach to ensure that the
assessment of the unit is useful for you to determine
both how well your learners have understood the content,
and what learners have misunderstood, if they have not
achieved as expected.

Each MCQ includes an answer sheet that highlights the
alternate conceptions that learners may have if they have
chosen a wrong answer. This ensures that you know
which areas to return to in later units.

Assessment

Rubric

The rubric is a tool to help you assess project-based work.
Each rubric covers the application of skills that have been
directly taught across a unit, and highlights to you whether
the learner is approaching (emerging), achieving
(expected), or exceeding the expectations for their age
group. The rubric allows you to assess projects that
learners have created, focussing on the appropriate
application of computing skills and concepts.

Adapting for your setting

As there are no universally agreed levels of assessment,
the assessment materials in The Computing Curriculum
are designed to be used and adapted by schools in a way
that best suits their needs. As mentioned above, the
summative assessment materials could feed into your
school’s assessment process, to align with its approach
to assessment in other foundation subjects.

Assessment | Key Stage 2 Teacher Guide | 17

Resources | Key Stage 2 Teacher Guide | 18

Software and hardware

Computing is intrinsically linked to technology and
therefore requires that learners experience and use a
range of digital tools and devices. As we wrote The
Computing Curriculum, we carefully considered the
hardware and software selected for the units. Our
primary consideration was how we felt a tool would best
allow learners to meet learning objectives; the learning
always came first and the tool second. The learning
objectives are not designed to be tool-specific.

To make the units of work more accessible to learners
and teachers, the materials include screenshots, videos,
and instructions, and these are based on the tools listed
in the table below. The list should not be seen as an
explicit requirement for schools. Schools may choose to
use alternative tools that offer the same features as
described in the units. All of the learning objectives can
be met with alternative hardware and software, as the
learning objectives are not designed to be tool-specific.

Hardware

Learners should experience using a range of digital
devices, which may include desktop, laptop, and tablet
computers. Learners should also experience using
hardware designed for specific purposes, e.g. data
loggers, floor robots, and microcontrollers.

Several of The Computing Curriculum units require the
use of physical computing devices. This is in recognition
of the growing importance of physical computing and
digital making and was part of our curriculum design
from the beginning.

Software

If you do not wish to use the software recommended in the
units, you could use an alternative piece of software that
provides the same function. All learning objectives should
be achievable using alternative software, however, The
Computing Curriculum will contain a lot less support if you

choose an alterative, as screenshots and demonstration
videos reflect the software referenced in the materials.

The units of work include the use of free software that
would need to be installed on local computers, and
software that is available as an online tool. Where
software needs to be installed locally, schools will need
to plan software installation in advance.

Several of the units that use online tools require schools
to sign up to free services in order to access the tools.
This also allows learners the opportunity to save the
projects that they are working on, and gives them the
skills that they need to manage their own usernames and
passwords as digital citizens. However, you need to
ensure that you are comfortable using the software and
managing accounts, and that the software is in line with
your school’s policies about using online tools and how
teachers will manage accounts.

Resources

3.1 Connecting computers

3.2 Stop-frame animation

3.3 Sequencing sounds

3.4 Branching databases

3.5 Desktop publishing

3.6 Events and actions in programs

4.1 The internet

4.2 Audio production

4.3 Repetition in shapes

4.4 Data logging

4.5 Photo editing

4.6 Repetition in games

Desktop or laptop Chromebook Tablet Software or hardware

Painting program (any)

iMotion (app for iOS)

Scratch

j2data Branch and Pictogram

Canva.com

Scratch

Various websites

Audacity

FMSLogo

Data logger and associated software

Paint.NET (for Microsoft Windows)

Scratch

Software and hardware overview
Requirements for learners — below �

●

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓
✓

●

●

+
●

●

●

✓

✓
✓

✓
✓

+

●

●

●

●

●

●

✓

✓

●

Resources | Key Stage 2 Teacher Guide | 19

✓ Used for the unit — reflected in screenshots ● Could be used as an alternative + Data loggers that work with Chromebooks or tablets are available. Check with suppliers.

Desktop or laptop Chromebook Tablet

Google Slides

Microsoft Photos (for Microsoft Windows 10)

Crumble controller + starter kit + motor

j2data Database

Google Drawings

Scratch

Google Slides

Google Sites

Scratch

Google Sheets or Microsoft Excel

Tinkercad

micro:bit and Microsoft MakeCode

5.1 Systems and Searching

5.2 Video production

5.3 Selection in physical computing

5.4 Flat-file databases

5.5 Introduction to vector graphics

5.6 Selection in quizzes

6.1 Communication and collaboration

6.2 Webpage creation

6.3 Variables in games

6.4 Introduction to spreadsheets

6.5 3D modelling

6.6 Sensing movement

Software or hardware

Software and hardware overview, cont.
Requirements for learners — below �

✓

✓

✓

✓
✓
✓

✓

✓

✓

✓

✓
✓

●

● ●

●

●

●

●

✓

✓

✓

✓

✓

✓
✓

✓
✓

✓

✓ Used for the unit — reflected in screenshots ● Could be used as an alternative

Resources | Key Stage 2 Teacher Guide | 20

Key Stage 2 Teacher Guide | 21

The Raspberry Pi Foundation is a UK-based charity with
the mission to enable young people to realise their full
potential through the power of computing and digital
technologies.

Our vision is that every young person develops:

•• The knowledge, skills, and confidence to use computers
and digital technologies effectively in their work,
community, and personal life; to solve problems and to
express themselves creatively

•• Sufficient understanding of societal and ethical issues 	
to be able to critically evaluate digital technologies
and their application, and to design and use
technology for good

Resources are updated regularly - the latest version is available at: the-cc.io/curriculum.

This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International licence. To view a copy of this license, visit, see creativecommons.org/licenses/by-nc-sa/4.0/.

•• The mindsets that enable them to confidently engage
with technological change and to continue learning
about new and emerging technologies

Our long-term goals

•• Education: To enable any school to teach students about
computing and how to create with digital technologies,
through providing the best possible curriculum,
resources, and training for teachers

•• Non-formal learning: To engage millions of young
people in learning about computing and how to create
with digital technologies outside of school, through
online resources and apps, clubs, competitions, and
partnerships with youth organisations

•• Research: To deepen our understanding of how young
people learn about computing and how to create with
digital technologies, and to use that knowledge to
increase the impact of our work and advance the field
of computing education

For more free support for teachers, including online
courses to enhance your understanding of computing
content and pedagogy, visit: raspberrypi.org/teach

Raspberry Pi Foundation

http://the-cc.io/curriculum
https://www.raspberrypi.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://raspberrypi.org/teach

