
Key Stage 2
A guide to The Computing Curriculum

Teacher
Guide

Key Stage 2 Teacher Guide

1 Introduction

2 Curriculum design
2 The approach

2	 				Coherence	and	flexibility

2 Knowledge organisation

3 Spiral curriculum

3 Physical computing

3 Online safety

4 Core principles

4	 				Inclusive	and	ambitious

4 Research-informed

4 Time-saving for teachers

5 Structure of the units of work
5 The Computing Curriculum overview

5 Brief overview

6 Unit summaries

8 National curriculum coverage — lower key stage 2

9 Upper key stage 2

10 Teaching order

10	 	 Mixed	year	groups

11 Progression
11 Progression across year groups

12 Progression within a unit — learning graphs

14 Pedagogy
14 Lead with concepts

14 Work together

14 Get hands-on

14 Unplug, unpack, repack

14 Model everything

15 Foster program comprehension

15 Create projects

15 Add variety

15 Challenge misconceptions
15 Make concrete

15 Structure lessons

15	 Read	and	explore	code	first

16 Assessment
16 Formative assessment

16 Summative assessment

16 Multiple choice quiz (MCQ)

16	 	 Rubric

17 Adapting for your setting

18 Resources
18 Software and hardware

18 Hardware

18 Software

19 Software and hardware overview

21 Raspberry Pi Foundation

Contents

The	Computing	Curriculum	is	our	complete	bank	of	free	
lesson plans and other resources that offer you everything
you need to teach computing lessons to all school-aged
learners.	It	helps	you	cover	the	full	breadth	of	computing,	
including computing systems, programming, creating
media, data and information, and societal impacts of
digital technology.

The	500	hours	of	free,	downloadable	resources	within	
The Computing Curriculum include all the materials you
need in your classroom: from lesson plans and slide decks
to activity sheets, homework, and assessments. To our
knowledge, this is the most comprehensive set of free
teaching and learning materials for computing and digital
skills in the world.

The aims of The Computing Curriculum are as follows:

•• Reduce teacher workload
•• Show	the	breadth	and	depth	of	computing,	particularly		
	 beyond	programming
•• Demonstrate	how	computing	can	be	taught	well,	based	
 on research
•• Highlight	areas	for	subject	knowledge	and	pedagogy	
 enhancement through training

The Computing Curriculum resources are regularly
updated	in	response	to	teachers’	feedback.	You	can	share	
your	feedback	at	http://the-cc.io/feedback	or	by	email	to	
resourcesfeedback@raspberrypi.org.

Key Stage 2 Teacher Guide | 1

Introduction

http://the-cc.io/feedback
mailto:resourcesfeedback%40raspberrypi.org?subject=

The approach

Coherence and flexibility
The Computing Curriculum is structured in units. For
these	units	to	be	coherent,	the	lessons	within	a	unit	
must	be	taught	in	order.	However,	across	a	year	group,	
the	units	themselves	do	not	need	to	be	taught	in	a	
particular	order,	with	the	exception	of	units	on	
programming, where concepts and skills rely on
students’	prior	learning	and	experiences.

Knowledge organisation
The	Computing	Curriculum	uses	our	taxonomy	of	
computing content to ensure comprehensive coverage of
the	subject.	The	taxonomy	provides	a	way	to	look	at	and	
describe	the	subject	of	computing	as	a	set	of	
interconnected	topics;	it	doesn’t	define	standards	or	
curricula. There are, of course, many ways of organising
the	subject	matter,	implemented	through	exam	
specifications,	textbooks,	schemes	of	learning,	and	various	
progression	guides.	For	our	computing	taxonomy,	we	

Curriculum design

reviewed	examples	of	each	of	these	from	England	and	
beyond.	All	learning	outcomes	can	be	described	through	
our	computing	taxonomy	of	eleven	strands,	ordered	
alphabetically	as	follows:

•• Algorithms	—	Be	able	to	comprehend,	design,	create,	
 and evaluate algorithms
•• Artificial intelligence — Developing computer systems
	 that	determine	the	relationships	between	inputs	and		
 output in order to make predictions rather than
 following programmed instructions
•• Computer networks — Understand how networks can
	 	be	used	to	retrieve	and	share	information,	and	how	
 they come with associated risks
•• Computer systems — Understand what a computer is, and
 how its constituent parts function together as a whole
•• Creating media — Select and create a range of media
	 including	text,	images,	sounds,	and	video
•• Data and information — Understand how data is
 stored, organised, and used to represent real-world
 artefacts and scenarios

•• Design and development — Understand the activities
 involved in planning, creating, and evaluating
 computing artefacts
•• Effective use of tools — Use software tools to support
 computing work
•• Impact of technology — Understand how individuals,
 systems, and society as a whole interact with
 computer systems
•• Programming — Create software to allow computers
	 to	solve	problems
•• Safety and security — Understand risks when using
 technology, and how to protect individuals and
 systems

Our	taxonomy	provides	categories	and	an	organised	view	
of content to encapsulate the discipline of computing.
Whilst all strands are present across all year groups in
The Computing Curriculum materials, they are not always
taught	explicitly.		

Curriculum design | Key Stage 2 Teacher Guide | 2

Spiral curriculum

The	units	for	key	stages	1	and	2	are	based	on	a	spiral	
curriculum. This means that each of the themes is revisited
regularly (at least once in each year group), and learners
revisit each theme through a new unit that consolidates
and	builds	on	prior	learning	within	that	theme.	

This style of curriculum design reduces the amount of
knowledge lost through forgetting, as topics are revisited
yearly. It also ensures that connections are made even if
different teachers are teaching the units within a theme in
consecutive years.

Curriculum design | Key Stage 2 Teacher Guide | 3

Physical computing

In The Computing Curriculum, we acknowledge that
physical computing plays an important role in modern
pedagogical	approaches	in	computing,	both	as	a	tool	to	
engage learners and as a strategy to develop learners’
understanding in more creative ways. Additionally, physical
computing supports and engages a diverse range of
learners	in	tangible	and	challenging	tasks.

The physical computing units in The Computing
Curriculum are:

•• Year 5 – Selection in physical computing, which uses
a	Crumble	controller

•• Year 6	–	Sensing	movement,	which	uses	a	micro:bit

Online safety

For each unit, the unit overview document shows the links
between	the	content	of	the	lessons	and	England’s	national	
curriculum	and	the	Education	for	a	Connected	World	
framework (the-cc.io/efacw).	These	references	have	been	
provided to show where aspects relating to online safety,
or digital citizenship, are covered within the The
Computing	Curriculum.	Not	all	of	the	objectives	in	the	
Education	for	a	Connected	World	framework	are	covered	
in	the	The	Computing	Curriculum,	as	some	are	better	
suited	to	other	subjects	in	England’s	education	system.	
However,	the	coverage	required	for	England’s	computing	
national curriculum is provided.

Schools should decide for themselves how they will ensure
that	online	safety	is	being	managed	effectively	in	their	
setting, as the scope of this is much wider than just
curriculum content.

http://the-cc.io/efacw

Effective
learning

experience Teaching
experience

Curricular

knowledge

Subject
matter
content

Knowledge
of our

learners
Pedagogical
knowledge

Core principles

Inclusive and ambitious
The	Computing	Curriculum	has	been	written	to	support	all	
learners.	Each	lesson	is	sequenced	so	that	it	builds	on	the	
learning from the previous lesson, and where appropriate,
activities are scaffolded so that all learners can succeed
and	thrive.	Scaffolded	activities	provide	learners	with	extra	
resources, such as visual prompts, to reach the same
learning	goals	as	the	rest	of	the	class.	Exploratory	tasks	
foster a deeper understanding of a concept, encouraging
learners	to	apply	their	learning	in	different	contexts	and	
make	connections	with	other	learning	experiences.

As	well	as	scaffolded	activities,	embedded	within	the	
lessons	are	a	range	of	pedagogical	strategies	(defined	in	
the ‘Pedagogy’ section of this document), which support
making	computing	topics	more	accessible.

Curriculum design | Key Stage 2 Teacher Guide | 4

Research-informed
The	subject	of	computing	is	much	younger	than	many	
other	subjects,	and	as	such,	there	is	still	a	lot	more	to	learn	
about	how	to	teach	it	effectively.	To	ensure	that	teachers	
are	as	prepared	as	possible,	The	Computing	Curriculum	
builds	on	a	set	of	pedagogical	principles	(see	the	
‘Pedagogy’ section of this document), which are
underpinned	by	the	latest	computing	research,	to	
demonstrate effective pedagogical strategies throughout.

To remain up-to-date as research continues to develop,
every aspect of The Computing Curriculum is reviewed
each year and changes are made as necessary.

Time-saving for teachers
The	Computing	Curriculum	has	been	designed	to	reduce	
teacher workload. To ensure this, The Computing
Curriculum includes all the resources a teacher needs,
covering every aspect from planning, to progression
mapping, to supporting materials.

1	Networks	are	not	part	of	England’s	key	stage	1	national	curriculum	for	computing,	but	the	title	is	used	as	a	strand	across	primary.

*The	numbers	in	the	brackets	are	a	‘quick	code’	reference	for	each	unit,	e.g.	1.3	refers	to	the	third	Year	1	unit	in	the	recommended	teaching	order.

Structure of the units of work | Key Stage 2 Teacher Guide | 5

Every	unit	of	work	in	the	The	Computing	Curriculum	contains:	a	unit	overview;	a	learning	graph,	to	show	the	
progression of skills and concepts in a unit; lesson content — including a detailed lesson plan, slides for
learners, and all the resources you will need; and formative and summative assessment opportunities.

The Computing Curriculum overview

Structure of the units of work

Computing systems
and networks

Connecting computers
(3.1)

The internet

(4.1)

Systems and searching
(5.1)

Communication and
collaboration	(6.1)

Creating media

Stop-frame animation
(3.2)

Audio production

(4.2)

Video production
(5.2)

Webpage	creation
(6.2)

Programming A

Sequencing sounds
(3.3)

Repetition in shapes

(4.3)

Selection in physical
computing (5.3)

Variables	in	games

(6.3)

Data and information

Branching	databases
(3.4)

Data logging

(4.4)

Flat-file	databases
(5.4)

Introduction to

spreadsheets (6.4)

Creating media

Desktop	publishing
(3.5)

Photo editing

(4.5)

Introduction to
vector graphics (5.5)

3D modelling
(6.5)

Programming B

Events	and	actions	
in programs (3.6)

Repetition in games
(4.6)

Selection in quizzes
(5.6)

Sensing movement
(6.6)

Year 3

Year 4

Year 5

Year 6

Unit summaries

Computing systems
and networks

Connecting computers
Identifying that digital
devices have inputs,

processes, and outputs,
and how devices can

be	connected	
to make networks.

The internet
Recognising the internet
as a network of networks
including the WWW, and
why we should evaluate

online content.

Creating media

Stop-frame animation
Capturing and editing
digital still images to
produce a stop-frame

animation that
tells a story.

Audio production
Capturing and editing

audio to produce a
podcast, ensuring that

copyright is
considered.

Programming A

Sequencing sounds
Creating sequences in

a	block-based	
programming language

to make music.

Repetition in shapes
Using	a	text-based	

programming language
to	explore	

count-controlled loops
when drawing shapes.

Data and information

Branching databases
Building and

using	branching	
databases	to	group	

objects	using	
yes/no questions.

Data logging
Recognising how
and why data is

collected over time,
before	using	data	

loggers to carry out
an investigation.

Creating media

Desktop publishing
Creating	documents	by	
modifying	text,	images,	
and page layouts for a

specified	purpose.

Photo editing
Manipulating digital

images,	and	reflecting	
on the impact of

changes and whether
the required purpose is

fulfilled.

Programming B

Events and actions
in programs

Writing algorithms and
programs that use a
range of events to

trigger sequences of
actions.

Repetition in games
Using	a	block-based	

programming
language	to	explore	
count-controlled and
infinite	loops	when	
creating a game.

Year 3

Year 4

Structure of the units of work | Key Stage 2 Teacher Guide | 6

Structure of the units of work | Key Stage 2 Teacher Guide | 7

Unit summaries

Computing systems
and networks

Systems and searching
Recognising IT systems

in the world and how
some	can	enable	

searching on the internet.

Communication
and collaboration

Exploring	how	data	is	
transferred	by	working	
collaboratively	online.

Creating media

Video production
Planning, capturing,
and editing video to

produce	a	short	film.	

Webpage creation
Designing and

creating	webpages,	
giving consideration

to copyright,
aesthetics, and

navigation.

Programming A

Selection in physical
computing

Exploring	conditions	
and selection using

a	programmable	
microcontroller.

Variables in games
Exploring	variables		

when designing and
coding a game.

Data and information

Flat-file databases
Using	a	database	
to order data and
create charts to

answer questions.

Introduction to
spreadsheets

Answering
questions	by	using	

spreadsheets
to organise and
calculate data.

Creating media

Introduction to vector
graphics

Creating images
in a drawing program

by	using	layers	and	
groups	of	objects.

3D modelling
Planning, developing,

and evaluating 3D
computer models of

physical	objects.

Programming B

Selection in quizzes
Exploring	selection	
in programming to
design and code an

interactive quiz.

Sensing movement
Designing and coding

a project that
captures inputs from

a physical device.

Year 5

Year 6

✓✓✓

✓✓

✓ ✓

✓

✓

✓✓✓✓✓✓✓ ✓ ✓ ✓ ✓ ✓

✓ ✓

✓ ✓

✓

✓

✓ ✓

✓ ✓ ✓

✓

✓✓ ✓

✓

Structure of the units of work | Key Stage 2 Teacher Guide | 8

National curriculum coverage - Years 3 and 4

Design,	write,	and	debug	programs	that	accomplish	specific	goals,	including	controlling	or	
simulating	physical	systems;	solve	problems	by	decomposing	them	into	smaller	parts

Use sequence, selection, and repetition in programs;
work	with	variables	and	various	forms	of	input	and	output

Use	logical	reasoning	to	explain	how	some	simple	algorithms	work	
and to detect and correct errors in algorithms and programs

Understand computer networks, including the internet; how they can provide multiple services,
such	as	the	World	Wide	Web;	and	the	opportunities	they	offer	for	communication	and	collaboration

Use search technologies effectively, appreciate how results are selected
and	ranked,	and	be	discerning	in	evaluating	digital	content

Select,	use,	and	combine	a	variety	of	software	(including	internet	services)	on	a	range	of	digital	
devices to design and create a range of programs, systems, and content that accomplish given
goals, including collecting, analysing, evaluating, and presenting data and information

Use	technology	safely,	respectfully,	and	responsibly;	recognise	acceptable/unacceptable	
behaviour;	identify	a	range	of	ways	to	report	concerns	about	content	and	contact

3.
1

 C
on

ne
ct

in
g

co
m

pu
te

rs

 3.
2

 S
to

p-
fra

m
e

an
im

at
io

n
 3.

3
 S

eq
ue

nc
in

g
so

un
ds

 3.

4
 B

ra
nc

hi
ng

	

da
ta

ba
se

s
 3.

5	
	D

es
kt

op
	p

ub
lis

hi
ng

 3.

6	
	E

ve
nt

s	
an

d	
ac

tio
ns

	

in
 p

ro
gr

am
s

4.
1

 T
he

 in
te

rn
et

4.
2

 A
ud

io
 p

ro
du

ct
io

n

 4.
3

 R
ep

et
iti

on
 in

 s
ha

pe
s

 4.
4

 D
at

a
lo

gg
in

g

4.
5

 P
ho

to
 e

di
tin

g

 4.
6

 R
ep

et
iti

on
 in

 g
am

es

✓✓

✓

✓

✓

✓

✓ ✓ ✓

✓

✓

✓

✓

✓

✓

✓

✓

✓✓ ✓

✓

✓

✓

✓

✓

✓✓

✓

✓ ✓

✓

✓ ✓

✓

✓

National curriculum coverage - Years 5 and 6

Design,	write,	and	debug	programs	that	accomplish	specific	goals,	including	controlling	or	
simulating	physical	systems;	solve	problems	by	decomposing	them	into	smaller	parts

Use sequence, selection, and repetition in programs;
work	with	variables	and	various	forms	of	input	and	output

Use	logical	reasoning	to	explain	how	some	simple	algorithms	work	
and to detect and correct errors in algorithms and programs

Understand computer networks, including the internet; how they can provide multiple services,
such	as	the	World	Wide	Web;	and	the	opportunities	they	offer	for	communication	and	collaboration

Use search technologies effectively, appreciate how results are selected
and	ranked,	and	be	discerning	in	evaluating	digital	content

Select,	use,	and	combine	a	variety	of	software	(including	internet	services)	on	a	range	of	digital	
devices to design and create a range of programs, systems, and content that accomplish given
goals, including collecting, analysing, evaluating, and presenting data and information

Use	technology	safely,	respectfully,	and	responsibly;	recognise	acceptable/unacceptable	
behaviour;	identify	a	range	of	ways	to	report	concerns	about	content	and	contact

5.
1

 S
ys

te
m

s
an

d

se
ar

ch
in

g
 5.

2
 V

id
eo

 p
ro

du
ct

io
n

 5.
3

 S
el

ec
tio

n
in

 p
hy

si
ca

l

co
m

pu
tin

g
 5.

4	
	F

la
t-fi

le
	d

at
ab

as
es

 5.

5
 In

tro
du

ct
io

n
to

ve
ct

or
 g

ra
ph

ic
s

 5.
6

 S
el

ec
tio

n
in

 q
ui

zz
es

6.
1

 C
om

m
un

ic
at

io
n

an
d

	
co

lla
bo

ra
tio

n

6.
2	

	W
eb

pa
ge

	c
re

at
io

n

 6.
3	

	V
ar

ia
bl

es
	in

	g
am

es

 6.
4

 In
tro

du
ct

io
n

to

sp

re
ad

sh
ee

ts

6.
5

 3
D

m
od

el
lin

g

 6.
6

 S
en

si
ng

 m
ov

em
en

t

Structure of the units of work | Key Stage 2 Teacher Guide | 9

What Why

Teaching order

The order in which to teach units within a school year is not
prescribed,	other	than	for	the	two	‘Programming’	units	for	
each	year	group,	which	build	on	each	other.	It	is	
recommended that the ‘Programming’ and ‘Creating media’
units	be	revisited	in	two	different	terms	within	the	school	
year,	so	that	the	concepts	and	skills	can	be	revisited	and	
consolidated. Otherwise, schools can choose the order in
which	they	teach	the	units,	based	on	the	needs	of	their	
learners and other topics or events that are happening
throughout the school year, to make use of cross-curricular
links	wherever	possible.	

Mixed year groups
There are many different approaches to organising learners
in	school	–	one	of	which	is	mixed	year	group	classes.	The	
content	throughout	The		Computing	Curriculum	is	based	on	
a	learning	progression	from	Year	1	through	to	Year	11	(ages	
5–16).	In	order	to	use	this	progression	with	mixed	year	
groups, , or any other school organisation system, we advise
teachers to use the learning graphs for the age group which
they	are	teaching	to	break	up	the	content	as	they	see	fit.	

Structure of the units of work | Key Stage 2 Teacher Guide | 10

Computing systems
and networks

Computer
systems

Computer
networks

Programming

Programming

Algorithms

Design and
development

Data and information

Data and information

Creating media

Creating
media

Design and
development

Primary
themes

Taxonomy
strands

Effective	use	of	tools

Impact of technology

Safety and security

Progression | Key Stage 2 Teacher Guide | 11

Progression across year groups

All	learning	objectives	have	been	mapped	to	our	computing	
taxonomy	of	eleven	strands,	which	ensures	that	units	build	
on each other across all year groups.

Within The Computing Curriculum materials for primary
schools, every year group learns through units within the
same	four	themes,	which	combine	ten	strands	of	the	
taxonomy	(see	table,	right).

This approach allows us to use the spiral curriculum
approach (see the ‘Spiral curriculum’ section for more
information) to progress skills and concepts from one
year	group	to	the	next.

Progression

Progression | Key Stage 2 Teacher Guide | 12

Progression within a unit —
learning graphs
Learning graphs are provided as part of each unit and
demonstrate progression through concepts and skills.
In order to learn some of those concepts and skills,
learners need prior knowledge of others, so the
learning graphs show which concepts and skills need
to	be	taught	first	and	which	could	be	taught	at	a	
different time.

The learning graphs often show more statements
than	there	are	learning	objectives.	All	of	the	skills	and	
concepts learnt are included in the learning graphs.
Some of these skills and concepts are milestones,
which	form	learning	objectives,	while	others	are	
smaller steps towards these milestones, which form
success criteria. Please note that the wording of
the	statements	may	be	different	in	the	learning	
graphs than in the lessons, as the learning graphs
are designed for teachers, whereas the learning
objectives	and	success	criteria	are	age-appropriate	
so	that	they	can	be	understood	by	learners.	In	each	

year group, there are two ‘Programming’ units of
work,	but	only	one	‘Programming’	learning	graph.	
The	second	‘Programming’	unit	builds	on	the	content	

in	the	first	‘Programming’	unit	so	closely	that	
there	is	no	specific	divide	where	one	ends	and	the	
other	begins.

To suggest questions that can
be answered using a table of
data

To identify data that can be
logged over time

To use a digital device to
collect data automatically

To recognise that a sensor can
be used as an input device for
data collection

To use a set of logged data to
find information

To export information in
different formats

To explain that a data logger
captures ‘data points’ from
sensors over time

To identify that sensors are
input devices

To choose how often to
automatically collect data
samples

To use a computer program to
sort data by one attribute

Resources are updated regularly - the latest version is available at: the-cc.io/curriculum.
This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a
copy of this license, visit, see creativecommons.org/licenses/by-nc-sa/4.0/

Concept

Skill

Key:

Links:

Direct prerequisite

Scaffolding not
direct prerequisite

Learning graph
Year 4 – Data and information – Data logging

To suggest questions that can
be answered using a table of
data

To identify data that can be
logged over time

To use a digital device to
collect data automatically

To recognise that a sensor can
be used as an input device for
data collection

To use a set of logged data to
find information

To export information in
different formats

To explain that a data logger
captures ‘data points’ from
sensors over time

To identify that sensors are
input devices

To choose how often to
automatically collect data
samples

To use a computer program to
sort data by one attribute

Resources are updated regularly - the latest version is available at: the-cc.io/curriculum.
This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a
copy of this license, visit, see creativecommons.org/licenses/by-nc-sa/4.0/

Concept

Skill

Key:

Links:

Direct prerequisite

Scaffolding not
direct prerequisite

Learning graph
Year 4 – Data and information – Data logging

KS2 Example learning graph
Year	4	-	Data	and	information	-	Data	logging

Progression | Key Stage 2 Teacher Guide | 13

Computing	is	a	broad	discipline,	and	computing	teachers	
require a range of strategies to deliver effective lessons to
their learners. Our pedagogical approach consists of 12
key	principles	underpinned	by	research:	each	principle	has	
been	shown	to	contribute	to	effective	teaching	and	
learning in computing.

It is recommended that computing teachers use their
professional judgement to review, select, and apply
relevant strategies for their learners.

These	12	principles	are	embodied	by	The	Computing	
Curriculum,	and	you	can	find	examples	of	their	
application throughout the units of work at every key
stage. Beyond delivering these units, you can learn
more	about	these	principles	and	related	strategies	in	
The Big Book of Computing Pedagogy we have collated
(the-cc.io/pedagogy).

Pedagogy | Key Stage 2 Teacher Guide | 14

Lead with concepts
Support learners in the acquisition of knowledge, through
the	use	of	key	concepts,	terms,	and	vocabulary,	providing	
opportunities	to	build	a	shared	and	consistent	
understanding. Glossaries, concept maps (the-cc.io/qr07) ,
and displays, along with regular recall and revision, can
support this approach.

Work together
Encourage	collaboration,	specifically	using	pair	
programming (the-cc.io/qr03) and peer instruction
(the-cc.io/qr04), and also structured group tasks. Working
together stimulates classroom dialogue, articulation of
concepts, and development of shared understanding.

Get hands-on
Use physical computing and making activities that offer
tactile	and	sensory		experiences	to	enhance	learning.	
Combining	electronics	and	programming	with	arts	and	
crafts	(especially	through	exploratory	projects)	provides	
learners	with	a	creative,	engaging	context	to	explore	and	
apply computing concepts.

Unplug, unpack, repack
Teach	new	concepts	by	first	unpacking	complex	terms	
and	ideas,	exploring	these	ideas	in	unplugged	and	
familiar	contexts,	then	repacking	this	new	understanding	
into the original concept. This approach, called ‘semantic
waves’ (the-cc.io/qr06), can help learners develop a
secure	understanding	of	complex	concepts.

Pedagogy

http://the-cc.io/pedagogy
http://the-cc.io/qr07
http://the-cc.io/qr03
http://the-cc.io/qr04
http://the-cc.io/qr06

Model everything
Model processes or practices — everything from
debugging	code	to	binary	number	conversions	—	using	
techniques	such	as	worked	examples	(the-cc.io/qr02) and
live coding (the-cc.io/qr05). Modelling is particularly
beneficial	to	novices,	providing	scaffolding	that	can	be	
gradually taken away.

Foster program comprehension
Use a variety of activities to consolidate knowledge and
understanding of the function and structure of program s
(the-cc.io/qr12),		including	debugging,	tracing,	and	Parson’s	
Problems.	Regular	comprehension	activities	will	help	secure	
understanding	and	build	connections	with	new	knowledge.	

Create projects
Use	project-based	learning	activities	to	provide	learners	
with the opportunity to apply and consolidate their
knowledge and understanding. Design is an important,
often overlooked aspect of computing. Learners can
consider how to develop an artefact for a particular user or
function, and evaluate it against a set of criteria.

Pedagogy | Key Stage 2 Teacher Guide | 15

Add variety
Provide activities with different levels of direction,
scaffolding, and support that promote learning, ranging
from	highly	structured	to	more	exploratory	tasks.	Adapting	
your	instruction	to	suit	different	objectives	will	help	keep	
all learners engaged and encourage greater independence.

Challenge misconceptions
Use formative questioning to uncover misconceptions
and adapt teaching to address them as they occur.
Awareness of common misconceptions alongside
discussion, concept mapping, peer instruction,
or simple quizzes can help identify areas of confusion.

Make concrete
Bring	abstract	concepts	to	life	with	real-world,	contextual	
examples,	and	a	focus	on	interdependencies	with	other	
curriculum	subjects.	This	can	be	achieved	through	the	
use of unplugged activities, proposing analogies,
storytelling	around	concepts,	and	finding	examples	of	
the concepts in pupils’ lives.

Structure lessons
Use supportive frameworks when planning lessons,
such as PRIMM (Predict, Run, Investigate, Modify, Make
— the-cc.io/qr11) and UMC (Use-Modify-Create). These
frameworks	are	based	on	research	and	ensure	that	
differentiation	can	be	built	in	at	various	stages	of	
the lesson.

Read and explore code first
When	teaching	programming,	focus	first	on	code	‘reading’	
activities,	before	code	writing.	With	both	block-based	and	
text-based	programming,	encourage	pupils	to	review	and	
interpret	blocks	of	code.	Research	has	shown	that	being	
able	to	read,	trace,	and	explain	code	augments	pupils’	
ability	to	write	code.

http://the-cc.io/qr02
http://the-cc.io/qr05
http://the-cc.io/qr12
http://the-cc.io/qr11

Formative assessment

Every	lesson	includes	formative	assessment	opportunities	
for you to use, and they are listed in the lesson plan. The
formative	assessments	may	be,	for	example,	observations,	
questioning, or marked activities. We include these in
every lesson to ensure that you can recognise and
address	learners’	alternate	conceptions	if	they	occur.You	
can use the assessments to decide whether and how to
adapt your teaching to suit the needs of the learners you
are working with.

At	the	beginning	of	every	lesson,	the	learning	objective	and	
success criteria are introduced in the slides. At the end of
every lesson, learners are invited to assess how well they
feel	they	have	met	the	learning	objective	using	thumbs	up,	
thumbs	sideways,	or	thumbs	down.	This	gives	learners	a	
reminder of the content that they have covered, as well as
a	chance	to	reflect.	It	is	also	a	chance	for	you	to	see	how	
confident	your	class	is	feeling	so	that	you	can	make	
changes	to	subsequent	lessons	accordingly.

Assessment | Key Stage 2 Teacher Guide | 14

Summative assessment

Every	unit	includes	an	optional	summative	assessment	
framework in the form of either a multiple choice quiz
(MCQ)	or	a	rubric.	The	summative	assessment	materials	
can inform your judgement around what a learner has
understood in each computing unit, and could feed into
your school’s assessment process, to align with its
approach	to	assessment	in	other	foundation	subjects.

All units in The Computing Curriculum are designed to cover
both	skills	and	concepts	from	across	England’s	computing	
national curriculum. Units that focus more on conceptual
development include MCQs as the optional summative
assessment framework. Units that focus more on skills
development	end	with	a	project	and	include	a	rubric.	Within	
the ‘Programming’ units, we have selected the assessment
framework	(MCQs	or	rubric)	on	a	best-fit	basis.

The summative assessments are meant to give you
insight into your learners’ understanding of computing
concepts and skills, as opposed to their reading and

writing skills. To this end, we have created the MCQs and
rubrics	with	great	care.	For	the	MCQs	this	involved,	for	
example,	carefully	choosing	the	wording	and	cultural	
references.	For	the	rubrics	it	involved	making	them	
focused on the purpose of application instead of the
specific	lesson	context.

Multiple choice quiz (MCQ)

Each	question	in	the	MCQ	has	been	designed	to	
represent learning that learners are meant to achieve
within the unit. In writing the MCQs, we have followed the
diagnostic assessment approach to ensure that the
assessment of the unit is useful for you to determine
both	how	well	your	learners	have	understood	the	content,	
and what learners have misunderstood, if they have not
achieved	as	expected.	

Each	MCQ	includes	an	answer	sheet	that	highlights	the	
alternate conceptions that learners may have if they have
chosen a wrong answer. This ensures that you know
which areas to return to in later units.

Assessment

Rubric

The	rubric	is	a	tool	to	help	you	assess	project-based	work.	
Each	rubric	covers	the	application	of	skills	that	have	been	
directly taught across a unit, and highlights to you whether
the learner is approaching (emerging), achieving
(expected),	or	exceeding	the	expectations	for	their	age	
group.	The	rubric	allows	you	to	assess	projects	that	
learners have created, focussing on the appropriate
application of computing skills and concepts.

Adapting for your setting

As there are no universally agreed levels of assessment,
the assessment materials in The Computing Curriculum
are	designed	to	be	used	and	adapted	by	schools	in	a	way	
that	best	suits	their	needs.	As	mentioned	above,	the	
summative assessment materials could feed into your
school’s assessment process, to align with its approach
to	assessment	in	other	foundation	subjects.

Assessment | Key Stage 2 Teacher Guide | 17

Resources | Key Stage 2 Teacher Guide | 18

Software and hardware

Computing is intrinsically linked to technology and
therefore	requires	that	learners	experience	and	use	a	
range of digital tools and devices. As we wrote The
Computing Curriculum, we carefully considered the
hardware and software selected for the units. Our
primary	consideration	was	how	we	felt	a	tool	would	best	
allow	learners	to	meet	learning	objectives;	the	learning	
always	came	first	and	the	tool	second.	The	learning	
objectives	are	not	designed	to	be	tool-specific.

To	make	the	units	of	work	more	accessible	to	learners	
and teachers, the materials include screenshots, videos,
and	instructions,	and	these	are	based	on	the	tools	listed	
in	the	table	below.	The	list	should	not	be	seen	as	an	
explicit	requirement	for	schools.	Schools	may	choose	to	
use alternative tools that offer the same features as
described	in	the	units.	All	of	the	learning	objectives	can	
be	met	with	alternative	hardware	and	software,	as	the	
learning	objectives	are	not	designed	to	be	tool-specific.

Hardware

Learners	should	experience	using	a	range	of	digital	
devices,	which	may	include	desktop,	laptop,	and	tablet	
computers.	Learners	should	also	experience	using	
hardware	designed	for	specific	purposes,	e.g.	data	
loggers,	floor	robots,	and	microcontrollers.

Several of The Computing Curriculum units require the
use of physical computing devices. This is in recognition
of the growing importance of physical computing and
digital making and was part of our curriculum design
from	the	beginning.

Software

If you do not wish to use the software recommended in the
units, you could use an alternative piece of software that
provides	the	same	function.	All	learning	objectives	should	
be	achievable	using	alternative	software,	however,	The	
Computing Curriculum will contain a lot less support if you

choose an alterative, as screenshots and demonstration
videos	reflect	the	software	referenced	in	the	materials.

The units of work include the use of free software that
would	need	to	be	installed	on	local	computers,	and	
software	that	is	available	as	an	online	tool.	Where	
software	needs	to	be	installed	locally,	schools	will	need	
to plan software installation in advance.

Several of the units that use online tools require schools
to sign up to free services in order to access the tools.
This also allows learners the opportunity to save the
projects that they are working on, and gives them the
skills that they need to manage their own usernames and
passwords as digital citizens. However, you need to
ensure	that	you	are	comfortable	using	the	software	and	
managing accounts, and that the software is in line with
your	school’s	policies	about	using	online	tools	and	how	
teachers will manage accounts.

Resources

3.1 Connecting computers

3.2 Stop-frame animation

3.3 Sequencing sounds

3.4	Branching	databases

3.5	Desktop	publishing

3.6	Events	and	actions	in	programs

4.1 The internet

4.2 Audio production

4.3 Repetition in shapes

4.4 Data logging

4.5 Photo editing

4.6 Repetition in games

Desktop or laptop Chromebook Tablet Software or hardware

Painting program (any)

iMotion (app for iOS)

Scratch

j2data Branch and Pictogram

Canva.com

Scratch

Various	websites

Audacity

FMSLogo

Data logger and associated software

Paint.NET	(for	Microsoft	Windows)

Scratch

Software and hardware overview
Requirements	for	learners	—	below						

●

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓
✓

●

●

+
●

●

●

✓

✓
✓

✓
✓

+

●

●

●

●

●

●

✓

✓

●

Resources | Key Stage 2 Teacher Guide | 19

✓		Used	for	the	unit	—	reflected	in	screenshots ●		Could	be	used	as	an	alternative						+	Data	loggers	that	work	with	Chromebooks	or	tablets	are	available.	Check	with	suppliers.

Desktop or laptop Chromebook Tablet

Google Slides

Microsoft Photos (for Microsoft Windows 10)

Crumble	controller	+	starter	kit	+	motor

j2data	Database

Google Drawings

Scratch

Google Slides

Google Sites

Scratch

Google	Sheets	or	Microsoft	Excel

Tinkercad

micro:bit	and	Microsoft	MakeCode

5.1 Systems and Searching

5.2 Video production

5.3 Selection in physical computing

5.4	Flat-file	databases

5.5 Introduction to vector graphics

5.6 Selection in quizzes

6.1	Communication	and	collaboration

6.2	Webpage	creation

6.3	Variables	in	games

6.4 Introduction to spreadsheets

6.5 3D modelling

6.6 Sensing movement

Software or hardware

Software and hardware overview, cont.
Requirements	for	learners	—	below						

✓

✓

✓

✓
✓
✓

✓

✓

✓

✓

✓
✓

●

● ●

●

●

●

●

✓

✓

✓

✓

✓

✓
✓

✓
✓

✓

✓		Used	for	the	unit	—	reflected	in	screenshots ●		Could	be	used	as	an	alternative

Resources | Key Stage 2 Teacher Guide | 20

Key Stage 2 Teacher Guide | 21

The	Raspberry	Pi	Foundation	is	a	UK-based	charity	with	
the	mission	to	enable	young	people	to	realise	their	full	
potential through the power of computing and digital
technologies.

Our vision is that every young person develops:

••		The	knowledge,	skills,	and	confidence	to	use	computers	
and digital technologies effectively in their work,
community,	and	personal	life;	to	solve	problems	and	to	
express	themselves	creatively

••		Sufficient	understanding	of	societal	and	ethical	issues		
to	be	able	to	critically	evaluate	digital	technologies	
and their application, and to design and use
technology for good

Resources	are	updated	regularly	-	the	latest	version	is	available	at:	the-cc.io/curriculum.

This	resource	is	licensed	by	the	Raspberry	Pi	Foundation	under	a	Creative	Commons	Attribution-NonCommercial-
ShareAlike 4.0 International licence. To view a copy of this license, visit, see creativecommons.org/licenses/by-nc-sa/4.0/.

••		The	mindsets	that	enable	them	to	confidently	engage	
with technological change and to continue learning
about	new	and	emerging	technologies

Our long-term goals

••		Education:	To	enable	any	school	to	teach	students	about	
computing and how to create with digital technologies,
through	providing	the	best	possible	curriculum,	
resources, and training for teachers

•• Non-formal learning: To engage millions of young
people	in	learning	about	computing	and	how	to	create	
with digital technologies outside of school, through
online	resources	and	apps,	clubs,	competitions,	and	
partnerships with youth organisations

•• Research: To deepen our understanding of how young
people	learn	about	computing	and	how	to	create	with	
digital technologies, and to use that knowledge to
increase	the	impact	of	our	work	and	advance	the	field	
of computing education

For more free support for teachers, including online
courses to enhance your understanding of computing
content and pedagogy, visit: raspberrypi.org/teach

Raspberry Pi Foundation

http://the-cc.io/curriculum
https://www.raspberrypi.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://raspberrypi.org/teach

